我们重新审视NPBG,这是一种流行的新型视图合成方法,引入了无处不在的点神经渲染范式。我们对具有快速视图合成的数据效率学习特别感兴趣。除前景/背景场景渲染分裂以及改善的损失外,我们还通过基于视图的网状点描述符栅格化来实现这一目标。通过仅在一个场景上训练,我们的表现就超过了在扫描仪上接受过培训的NPBG,然后进行了填充场景。我们还针对最先进的方法SVS进行了竞争性,该方法已在完整的数据集(DTU,坦克和寺庙)上进行了培训,然后进行了对现场的培训,尽管它们具有更深的神经渲染器。
translated by 谷歌翻译
我们建议使用像素对齐的局部图像特征来改进基于人类形状的基于人体形状和姿势估计的方法和姿势估计。给定单个输入彩色图像,现有的图形卷积网络(GCN)用于人类形状和姿势估计的技术使用单个卷积神经网络(CNN)生成的全局图像特征,同样地附加到所有网眼顶点以初始化GCN级,其变换α模板T型网格到目标姿势。相比之下,我们首次提出了每个顶点使用本地图像特征的想法。通过利用用密集产生的像素对应的对应,从CNN图像特征映射中采样这些特征。我们对标准基准的定量和定性结果表明,使用当地特征可以改善全球性,并导致关于最先进的竞争性表演。
translated by 谷歌翻译
Context is vital for commonsense moral reasoning. "Lying to a friend" is wrong if it is meant to deceive them, but may be morally okay if it is intended to protect them. Such nuanced but salient contextual information can potentially flip the moral judgment of an action. Thus, we present ClarifyDelphi, an interactive system that elicits missing contexts of a moral situation by generating clarification questions such as "Why did you lie to your friend?". Our approach is inspired by the observation that questions whose potential answers lead to diverging moral judgments are the most informative. We learn to generate questions using Reinforcement Learning, by maximizing the divergence between moral judgements of hypothetical answers to a question. Human evaluation shows that our system generates more relevant, informative and defeasible questions compared to other question generation baselines. ClarifyDelphi assists informed moral reasoning processes by seeking additional morally consequential context to disambiguate social and moral situations.
translated by 谷歌翻译
Pre-trained language models, despite their rapid advancements powered by scale, still fall short of robust commonsense capabilities. And yet, scale appears to be the winning recipe; after all, the largest models seem to have acquired the largest amount of commonsense capabilities. Or is it? In this paper, we investigate the possibility of a seemingly impossible match: can smaller language models with dismal commonsense capabilities (i.e., GPT-2), ever win over models that are orders of magnitude larger and better (i.e., GPT-3), if the smaller models are powered with novel commonsense distillation algorithms? The key intellectual question we ask here is whether it is possible, if at all, to design a learning algorithm that does not benefit from scale, yet leads to a competitive level of commonsense acquisition. In this work, we study the generative models of commonsense knowledge, focusing on the task of generating generics, statements of commonsense facts about everyday concepts, e.g., birds can fly. We introduce a novel commonsense distillation framework, I2D2, that loosely follows the Symbolic Knowledge Distillation of West et al. but breaks the dependence on the extreme-scale models as the teacher model by two innovations: (1) the novel adaptation of NeuroLogic Decoding to enhance the generation quality of the weak, off-the-shelf language models, and (2) self-imitation learning to iteratively learn from the model's own enhanced commonsense acquisition capabilities. Empirical results suggest that scale is not the only way, as novel algorithms can be a promising alternative. Moreover, our study leads to a new corpus of generics, Gen-A-Tomic, that is of the largest and highest quality available to date.
translated by 谷歌翻译
我们挑战AI模型,以“展示”对《纽约客》标题比赛的复杂多模式幽默的理解。具体而言,我们开发了三个精心限制的任务,以掌握图像和标题之间的潜在复杂和意外的关系,并且对人类经验的广泛品种产生了复杂和意外的寓意;这些是纽约口径卡通的标志。我们调查了直接将卡通像素和字幕输入的视觉和语言模型,以及仅通过提供图像的文本描述来规避图像处理的仅限语言模型。即使我们为卡通图像提供了丰富的多方面注释,我们也可以确定高质量的机器学习模型(例如,微调,175b参数语言模型)和人类之间的性能差距。我们公开发布我们的语料库,包括描述图像的位置/实体的注释,场景的不寻常以及对笑话的解释。
translated by 谷歌翻译
本文考虑了以分布式和计算障碍方式组成的大规模网络系统的稳定区域的问题。估计一般非线性系统稳定区域的一种标准方法是首先找到该系统的Lyapunov函数,并将其吸引区域描述为稳定区域。但是,用于查找lyapunov函数的经典方法,例如平方的方法和二次近似,要么不扩展到大型系统,要么对稳定区域进行非常保守的估计。在这种情况下,我们通过利用子系统的耗散性结构来提出一种新的基于分布式学习的方法。我们的方法有两个部分:第一部分是一种分布式方法,用于学习所有子系统的存储功能(类似于Lyapunov函数),第二部分是一种分布式优化方法,可以使用该系统找到网络系统的Lyapunov功能学习子系统的存储功能。我们通过微电网网络中的广泛案例研究证明了我们提出的方法的出色表现。
translated by 谷歌翻译
自上而下的实例分割方法通过对偏低预测的套餐来改善地图,以匹配地面真相。此外,自上而下方法的查询键范式导致实例合并问题。过多的重复预测导致(过度)计数误差,类别和本地化分支的独立性导致命名误差。除非映射指标不会捕获这些错误,因为我们表明琐碎的抖动方案可以同时增加映射错误。为此,我们提出了两个基于图的指标,这些指标量化了对冲级别和阶级的对冲量。我们猜想对冲问题的来源是由于特征合并并提出a)对比度流场作为监督信号中的上下文差异,而b)语义分类和NMS步骤,以抑制重复和错误分类的预测。消融表明,我们的方法比基线更好地编码上下文信息,并且与最新的实例分割方法相比,我们的方法同时降低了合并和对冲错误。
translated by 谷歌翻译
预后有助于实地系统或产品的寿命。量化该系统的当前健康状况使预后能够增强操作员的决策以保护系统的健康状况。由于(a)未知的身体关系和/(b)数据中的不规则性远远超出了问题的启动,因此很难为系统创建预后。传统上,三种不同的建模范例已被用来开发预后模型:基于物理学(PBM),数据驱动(DDM)和混合模型。最近,结合了基于PBM和DDM的方法并减轻其局限性的混合建模方法在预后域中获得了吸引力。在本文中,概述了基于模糊逻辑和生成对抗网络(GAN)的概念的组合概念的一种新型混合建模方法。基于Fuzzygan的方法将基于物理的模型嵌入模糊含义的聚集中。该技术将学习方法的输出限制为现实解决方案。轴承问题的结果表明,在模糊逻辑模型中添加基于物理的聚集的功效,以提高GAN对健康建模的能力并提供更准确的系统预后。
translated by 谷歌翻译
尽管电子健康记录是生物医学研究的丰富数据来源,但这些系统并未在医疗环境中统一地实施,并且由于医疗保健碎片化和孤立的电子健康记录之间缺乏互操作性,可能缺少大量数据。考虑到缺少数据的案例的删除可能会在随后的分析中引起严重的偏见,因此,一些作者更喜欢采用多重插补策略来恢复缺失的信息。不幸的是,尽管几项文献作品已经通过使用现在可以自由研究的任何不同的多个归档算法记录了有希望的结果,但尚无共识,MI算法效果最好。除了选择MI策略之外,归纳算法及其应用程序设置的选择也至关重要且具有挑战性。在本文中,受鲁宾和范布伦的开创性作品的启发,我们提出了一个方法学框架,可以应用于评估和比较多种多个插补技术,旨在选择用于计算临床研究工作中最有效的推断。我们的框架已被应用于验证和扩展较大的队列,这是我们在先前的文献研究中提出的结果,我们在其中评估了关键患者的描述符和Covid-19的影响在2型糖尿病患者中的影响,其数据为2型糖尿病,其数据为2型糖尿病由国家共同队列合作飞地提供。
translated by 谷歌翻译
Deep neural network (DNN) classifiers are often overconfident, producing miscalibrated class probabilities. Most existing calibration methods either lack theoretical guarantees for producing calibrated outputs or reduce the classification accuracy in the process. This paper proposes a new Kernel-based calibration method called KCal. Unlike other calibration procedures, KCal does not operate directly on the logits or softmax outputs of the DNN. Instead, it uses the penultimate-layer latent embedding to train a metric space in a supervised manner. In effect, KCal amounts to a supervised dimensionality reduction of the neural network embedding, and generates a prediction using kernel density estimation on a holdout calibration set. We first analyze KCal theoretically, showing that it enjoys a provable asymptotic calibration guarantee. Then, through extensive experiments, we confirm that KCal consistently outperforms existing calibration methods in terms of both the classification accuracy and the (confidence and class-wise) calibration error.
translated by 谷歌翻译